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a b s t r a c t

Prior research has identified two modes of quantitative estimation: numerical retrieval and ordinal con-
version. In this paper we introduce a third mode, which operates by a feature-based inference process. In
contrast to prior research, the results of three experiments demonstrate that people estimate automobile
prices by combining metric information associated with two critical features: product class and brand
status. In addition, Experiments 2 and 3 demonstrated that when participants are seeded with the actual
current base price of one of the to-be-estimated vehicles, they respond by revising the general metric and
splitting the information carried by the seed between the two critical features. As a result, the degree of
post-seeding revision is directly related to the number of these features that the seed and the transfer
items have in common. The paper concludes with a general discussion of the practical and theoretical
implications of our findings.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The ability to generate numerical estimates is a critical compo-
nent of our capacity to understand our physical and social environ-
ments. Such judgments are an important and pervasive part of our
day-to-day lives. Previous research has examined numerical esti-
mation in a wide variety of situations ranging from the nutritional
value of fast foods (Wallbaum, 1997) and number of lifetime sexual
partners (Brown & Sinclair, 1999) to insect toxicity (von Helversen
& Rieskamp, 2008) and dates for personal and public events
(Brown, 1990; Burt, 1992). The results indicate that in some do-
mains people are relatively accurate (see, e.g., university tuitions,
Lawson & Bhagat, 2002), while in other domains respondents can
err by an order of magnitude or more (see, e.g., estimates of na-
tional populations, Brown & Siegler, 1993). Despite substantial dif-
ferences between the various domains, progress has been made
towards understanding how these estimates are generated and
some consistent patterns have emerged. Specifically, prior research
has identified two modes of quantitative estimation: numerical
retrieval and ordinal conversion (for a review, see Brown, 2002).
ll rights reserved.
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In this paper, we add to the extant literature by identifying a
third estimation mode, feature-based inference (FBI). Specifically,
we argue that people sometimes generate quantitative estimates
by combining, in an additive manner, numerical values associated
with a small number of critical features. Among the estimation
modes identified by this research program, only FBI is a variant
of the classic additive compensatory model (Brunswik, 1952,
1956; Hammond, 1955; Hammond, Stewart, Brehmer, & Steinman,
1975). Previous research has demonstrated that models from this
family can be applied to a wide variety of judgment and decision
contexts (e.g., medical judgment, Wigton, 1996; educational deci-
sions, Heald, 1991; venture capital, Zacharakis & Meyer, 1998;
public policy, Adelman, Stewart, & Hammond, 1975; etc.). The
present study extends this stream of research and demonstrates
that this type of process can also be used when people generate
numerical estimates.

2. Estimation modes and seeding effects

People use a variety of strategies to generate numerical esti-
mates. Although strategies can differ from one another in many
ways, it has been possible to identify two broad estimation modes
which make it possible to classify strategies according to their pre-
conditions and their core processing assumptions (Brown, 2002).
One of these is the numerical retrieval mode. A person is said to
have used a numerical retrieval strategy when he or she retrieves
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at least one relevant quantitative fact while generating an estimate
and uses this fact (or these facts) as the basis for a response. In this
context, a quantitative fact is defined as explicit pre-existing
knowledge of the numerical value posed by a particular item for
the current target dimension. ‘‘Reconstructive” date estimation
(which involves retrieval of landmark dates and temporal infer-
ences based on those dates; Brown, 1990; Friedman, 1993, 2004;
Shum, 1998) and rate-based behavioral frequency estimation
(which involves the retrieval of rate-of-occurrence facts and com-
putations based on those facts; Conrad, Brown, & Cashman, 1998;
Menon, 1993) provide two well-studied examples of numerical re-
trieval strategies.

The defining element of a numerical retrieval strategy is the re-
call and utilization of relevant domain-specific quantitative facts.
Because these facts are relatively scarce (Nickerson, 1980; Paulos,
1990), the use of these strategies is limited. In contrast, ordinal-
conversion strategies appear to be widely applicable. Strategies
of this sort typically involve a preparatory stage, called setting the
metric, during which a response range is defined and partitioned.
Once the range has been established, two steps are required to pro-
duce a numerical estimate. The first step determines the relative
position of the target item or its ordinal value. During the second
step, a numerical response is generated by selecting a value from
the appropriate portion of the response range (Brown, 2002).

One of the unique features of the research on ordinal conversion
is the use of the seeding procedure; Experiments 2 and 3, below,
are also seeding experiments. In the typical seeding study, partic-
ipants first provide numerical estimates for a set of items; then
they learn the actual value of at least one of these items and pro-
vide a second set of estimates. Seeding experiments have provided
evidence that people depend on two independent sources of
knowledge when they generate real-world estimates; one of these
has been labeled metric knowledge (knowledge and beliefs used to
define and partition the response range) and the other mapping
knowledge (knowledge and beliefs used by ordinal processes to
determine the relative magnitude of the target items) (Brown &
Siegler, 1993; Von Helversen & Rieskamp, 2008).

In addition, these studies provide evidence that seed facts affect
estimation performance in different ways. Under most conditions,
seeding causes people only to revise their metric beliefs, shifting
the range as a whole in the direction indicated and to the degree
specified by the metric information carried in the seed value(s).
This sort of global updating, called metric revision, often results in
an across-the-board decrease in absolute error, but no change in
the rank-order correlation between estimated and actual values.
There are also conditions under which participants redefine the
upper and lower values of a portion within the response range –
this is called repartitioning the range. This occurs when people have
an accurate understanding of the response range; when the range
is aligned with and portioned to match a well-defined categorical
structure; and when people primarily rely on categorical (inheri-
tance-based) inferences to generate their estimates (Friedman &
Brown, 2000a, 2000b). This process produces a uniform shift in
the post-seeding estimates for items assigned to the revised cate-
gory (i.e., the category aligned with the revised portion of the re-
sponse range) and may also produce uniform shifts in items for
neighboring categories. (This happens when people assume that
neighboring categories are also ‘‘strictly adjacent”; Friedman &
Brown, 2000b.)

In closing this brief sketch of the estimation literature, it is
important to emphasize two points. First, this research indicates
that the contents and structure of the relevant knowledge-base
play a critical role in determining how people generate their esti-
mates. Second, this work has demonstrated that estimation pat-
terns and seeding effects accurately reflect what people know
about a given domain and how they organize this knowledge.
The current project took these claims as a starting point and dem-
onstrates that domain knowledge, estimation performance, and
seeding effects are explicably related.

3. A feature-based inference model

In this paper we are suggesting that an additive compensatory
inference model (e.g., Brunswik, 1952, 1956; Doherty & Kurz,
1996; Hammond, 1955; Hammond et al., 1975) can account for re-
sults that other previously identified modes of estimation are unable
to adequately explain. This type of model has been used extensively
in many different contexts from medical and judicial judgments
(e.g., Dhami, 2003; Wigton, 1996) to educational and financial deci-
sion making (e.g., Heald, 1991; Zacharakis & Meyer, 1998). Prior re-
search examining numerical estimation has suggested that ‘‘people
typically use multiple cues to derive an estimate, that they weigh
some cues more heavily than others, and that the weight they assign
to each cue is a function of its predictive accuracy relative to the pre-
dictive accuracy of competing cues” (Brown & Siegler, 1993, p. 530).
However, although such an approach clearly has the potential to
make a contribution to our understanding of numerical estimation,
this line of thinking has not been incorporated into previous models
of the estimation process.

Nevertheless, some important domains of numerical information
are clearly structured by a few critical features. For example, season
and latitude are two critical features that people could use to esti-
mate ambient temperatures. Similarly, in the domain of consumer
products, marketers and manufacturers go to great lengths to differ-
entiate the price of their offerings based on a few critical features
(e.g., Anderson, de Palma, & Thisse, 1992; Levitt, 1980). Quality is a
common example of such a feature. Higher quality is generally be-
lieved to be, and often is, correlated with higher prices (e.g., Leavitt,
1954; Rao & Monroe, 1989) – e.g., Rolls Royce versus Kia automo-
biles. Brand status and country of origin are other examples (e.g., Ro-
lex versus Timex, or Swiss versus Chinese). Other diagnostic features
are product-specific such as size for TV screens, processor speed for
computers, neighborhood for homes, and so on. The point is that
consumer products are often conceived, designed and sold based
on the features that they do (or do not) possess. As a result, it is rea-
sonable to suspect that price estimates are a numerical domain in
which feature-based inferences play an important role.

In domains structured by key features, the additive value of the
features can be critical. That is, although one feature does not pro-
vide enough information to allow for a reasonable estimate, two
features can be very diagnostic. Consider, for example, estimates
of ambient temperature. Knowing the season or latitude alone is
not very helpful. However, together they can allow for reasonably
accurate estimates (e.g., estimating the temperature in winter at
the equator versus at the north pole or in Chicago (42�N) in the
summer versus the winter). Similarly, knowing individual features
such as the category that a product comes from (e.g., watch, dress
shirt, coffee, and SUV) or the brand name (e.g., Armani, Old Navy,
Starbucks, and Ford) are useful at only a very general level; how-
ever, knowing both pieces of information allows for substantially
more accurate price estimates.

The basic premise underlying our model is an expectation that
in some domains, such as prices, people can rely on a small number
of critical features to generate estimates. Specifically, following
this approach, an estimate would be produced by associating a
weight with each critical feature and then summing the weighted
terms. In many cases, when the to-be-estimated entity possesses
none of the critical features its value will still be greater than zero,
which implies a constant term in the additive process. Formally,
this model can be represented with the following general form:

n ¼ aþ
X

wixi
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where n is the numerical estimate; a is the constant value assigned
to all entities that possess none of the i critical features; wi repre-
sents the weights assigned to each feature i, indicating the amount
by which n increases for each increment of one in the value of the
feature xi.

As an example of the FBI process, consider the domain of new
automobiles and an individual who believes that a new vehicle
costs at least $15,000 (i.e., a = $15,000). Also, assume s/he uses
two critical features, brand image and type – that is, vehicles have
either a premium brand image (value = 1) or not (value = 0) and are
of a premium type (e.g., SUV or sports car; value = 1) or not (e.g., ba-
sic passenger car; value = 0). These features are then weighted – for
example, wbrand = $10,000 and wtype = $20,000. With this informa-
tion an estimate can be produced for any vehicle by simply deciding
whether or not it is a premium brand and/or a premium type of
automobile. A vehicle that is believed to be premium on both fea-
tures would be estimated to cost $45,000 (i.e.,
n = $15,000 + ($10,000 � 1) + ($20,000 � 1)); a vehicle that is not
perceived as premium on either feature would be assigned a value
of $15,000 (i.e., n = $15,000 + ($10,000 � 0) + ($20,000 � 0)); the
price of a vehicle that is from a premium brand, but is a basic type
of automobile, would be estimated at $25,000 (i.e.,
n = $15,000 + ($10,000 � 1) + ($20,000 � 0)); and a vehicle that is
not a premium brand, but is a premium type of vehicle, would
be estimated at $35,000 (i.e., n = $15,000 + ($10,000 � 0) +
($20,000 � 1)).

It is worth noting that this process is distinctly different from
both numerical retrieval and ordinal conversion. As compared to
numerical retrieval, people using FBI are not retrieving the price
of the target from any other ‘‘reference” or ‘‘landmark” vehicle. In-
stead the car is ‘‘decomposed” into critical features; the feature
values are accessed, weighted and combined to generate a re-
sponse. FBI is also a very different process than ordinal conversion.
Using FBI there is no need to make an ordinal judgment or map an
ordinal value onto the response range. In the FBI model, the metric
information is determined by the weights associated with each of
the critical features.

However, as defined above, the FBI process also includes an esti-
mate of the minimum value (i.e., a) for the entity in question. This
value is not directly related to any feature or combination of fea-
tures, but instead represents the lower bound of the range of esti-
mates. As in the previous vehicle example, a sets a lower bound for
estimates (e.g., a price of $15,000) – that is, a vehicle that is not
perceived to be ‘‘premium” on either critical feature would be as-
signed a value of $15,000 (i.e., n = $15,000 + ($10,000 � 0) +
($20,000 � 0)).

3.1. The split-seed hypothesis

A novel prediction of the FBI model, relative to numerical retrie-
val and ordinal conversion, is that metric information can be stored
and revised at the level of critical features. As a result, when people
are using an FBI process, they should respond to a seed fact by
splitting the information carried by the seed between the critical
features. Therefore, the degree of post-seeding revision should be
directly related to the number of these features that the seed and
the transfer items have in common – i.e., the split-seed effect. Spe-
cifically, when a seed fact (e.g., automobile price) that is incongru-
ent with the first set of estimates is made available, the second set
of estimates should be revised in a manner that is dependent upon
the relationship between the seed fact, the critical features and the
automobile being estimated. Therefore, continuing with the above
example, vehicles that share both of the critical features will be af-
fected the most, followed by those that share a single critical fea-
ture, with the smallest effects being reserved for the automobiles
that do not share those features with the seed vehicle.
For example, after learning that one automobile (that is both a
premium brand and a premium type) is $15,000 more expensive
than it was originally thought to be, an individual might adjust
the weights assigned to the critical features such that premium
brand automobiles are now estimated to be $5000 more expensive
and premium type automobiles are estimated to be $10,000 more
expensive. ‘‘Splitting the seed” in this manner suggests that all pre-
mium brand automobile estimates will increase by $5000; all pre-
mium type automobile estimates will increase by $10,000; and
estimates for automobiles that share both critical features (i.e., pre-
mium brand and type) will increase by $15,000. Neither numerical
retrieval nor ordinal conversion would predict or easily account for
these effects. The split-seed hypothesis is tested directly in Exper-
iments 2 and 3. First, however, it is necessary to identify the fea-
tures that are critical in structuring automobile price knowledge.
4. Experiment 1

The features used to generate estimates will, obviously, vary be-
tween domains (Brown & Siegler, 1993); therefore, which features
play what role within a particular domain of interest is an empir-
ical question (Brown, 2002). For this reason, Experiment 1 is a pilot
study that examines the relative efficacy of different features in
producing automobile price estimates. That information is then
used to design Experiments 2 and 3, and to produce more detailed
predictions that allow us to further test the value of this model.

4.1. Method

4.1.1. Participants
Data were collected from 22 undergraduate psychology students

(11 male and 11 female) at a large Canadian university (each student
was paid $5 for participating). The mean age was 22.3 years and ran-
ged from 19 to 29. Of these participants 68% currently owned a vehi-
cle, 41% were planning to buy a vehicle in the next 12 months, and
18% had purchased a vehicle in the past 12 months. These partici-
pants reported that they have thought about vehicles an average
of 11.2 times over the past month, with a range of 1–45 times.

4.1.2. Design
All participants were asked to provide price estimates for 18 auto-

mobiles. The vehicles used in all three experiments reported in this
paper were new models when the data were collected. Dependent
variables were estimates of the base price – i.e., the minimum price
at which the vehicles can be acquired – for each of the 18 automobiles
and ratings of perceived quality for each of the six brands.

4.1.3. Materials
The 18 automobiles for which participants estimated prices in

this experiment were taken from six brands (Ford, Chevrolet, Toy-
ota, Honda, BMW, and Mercedes) and three product categories
(passenger cars, sports cars, SUVs). The models used were Passen-
ger cars: Ford Focus, Chevrolet Cavalier, Toyota Echo, Honda Civic,
BMW 323i, Mercedes C230; Sport Utility Vehicles (SUVs): Ford Ex-
plorer, Chevrolet Blazer, Toyota 4Runner, Honda CRV, BMW X5,
Mercedes M-Class; Sports Cars: Ford Mustang, Chevrolet Corvette,
Toyota Celica, Honda S2000, BMW Z3, Mercedes SLK-Class. The
participants were provided with the brand and the model (e.g.,
Honda S2000 or BMW 323i) for each vehicle for which they were
asked to provide a price estimate.

4.1.4. Procedure
All respondents performed a familiarity rating task, a price esti-

mation task, and a brand quality rating task. All the tasks were
completed on a personal computer in a laboratory with the
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experimenter present. Participants were first asked to complete a
familiarity ratings task. Each participant was asked to rate their level
of familiarity with each of the 18 automobiles. The automobiles were
each presented only once and on the computer screen one at a time;
each participant provided a rating, on a 0 (not at all familiar) to 9
(very familiar) scale, before continuing onto the next vehicle. Partic-
ipants were given the brand and model of the vehicle followed in
parentheses by the category – for example, Ford Explorer (SUV).
The vehicles were presented in random order; however, each of
the three product classes (SUVs, sports cars and passenger cars)
was presented before any of the three classes were repeated.

After completing the familiarity task, participants provided base
price estimates for each of the 18 automobiles. The automobiles
were again presented in the same randomized fashion as in the
familiarity rating task. After providing price estimates participants
were asked to provide quality ratings, on a 0 (very low quality) to 9
(very high quality) scale, for each of the automobile brands, with
the brands being presented in a random order. At the end of the
experiment all participants completed a survey that asked whether
or not they owned a vehicle, whether or not they planned to buy a
vehicle in the next 12 months, whether or not they had purchased
a vehicle in the previous 12 months, as well as the participant’s
gender. We also asked participants: How many times in the past
month have you thought about or discussed vehicles?

4.2. Results

Two measures were computed for each participant and each
estimate: signed normalized error (SNE = [estimated price � actual
price]/actual price) and absolute normalized error (ANE = |SNE|).
These measures were averaged across the six instances represent-
ing each vehicle class yielding three SNEs and three ANEs. Three
estimate means, one for each vehicle class, were also computed.
In addition, we computed separate rank-order correlations be-
tween estimated and actual price for each vehicle class, along with
the percentage of correct estimates – consistent with previous
studies (see Monroe & Lee, 1999) a correct response was consid-
ered to be ±5% of the current price of the to-be-estimated vehicle.
Finally, a single rank-order correlation was computed over all 18
responses for each participant.

Percentage correct can be seen as providing an upper bound on
the use of a price retrieval strategy. The rank-order correlations
indicate whether participants had a good sense of the relative
prices of the vehicles regardless of the accuracy of their metric
knowledge (Brown & Siegler, 1993). ANE provides a normalized
measure of overall accuracy; ANE is small when estimates tend
to be accurate and large when they do not. SNE provides a normal-
ized measure of bias; a negative SNE indicates a bias to underesti-
mate prices and a positive SNE a tendency to overestimate them.
To facilitate comparisons to previous research, which focused on
accuracy within product categories, in this section we restricted
our analysis to product class. This approach reflects the exploratory
nature of this experiment. As mentioned above, one of the primary
goals of this experiment was to obtain evidence that would allow
us to identify key features that structure people’s knowledge of
automobile prices.

Table 1 reports the hit-rate or percentage of correct estimates.
Consistent with previous work on consumer price knowledge our
data indicate that exact price recall is rare. Across the three prod-
uct categories accuracy ranged from 10.6% (for Sports Cars) to
12.1% (for SUVs and Passenger Cars). To test for differences in price
estimation accuracy between the three product categories we used
a random effects logistic regression model, with accuracy coded as:
1 = accurate price estimate (within ±5% of the true price); and
0 = inaccurate price estimate. We find no significant difference in
accuracy between the product categories (z = 1.07; p = 0.283). This
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Fig. 1. Experiment 1 – mean price estimates and true prices across the three product categories.
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level of recall is lower than other recent studies of exact price recall
accuracy, measured as ±5% of the true price, which ranged from
24% to 65% (see Monroe & Lee, 1999, for a review). In addition to
the relatively low levels of accuracy, the absolute magnitude of
the estimation errors is nontrivial. Table 1 reports the mean abso-
lute normalized error (ANE) calculations for each product class.
When expressed as a percentage, the ANEs range from 25.7%
(SUVs) to 33.6% (Sports Cars), which is higher than a range of
6.0–19.5% previously reported for a number of different product
categories (Monroe & Lee, 1999). To test for differences in ANEs be-
tween product categories we used a random effects GLS regression
model (we use a random effects GLS regression model to account
for the fact that each participant provides a price estimate for each
of the 18 automobiles). We find a significant difference (z = �2.490,
p = 0.013), which indicates that the ANEs are significantly larger for
sports cars than for the other vehicle categories.

Prior research in this area has suggested that scalar variability
can be important in understanding estimate accuracy, especially
in the domain of prices (Grewal & Marmorstein, 1994; Marques
& Dehaene, 2004). In particular, the Weber fraction – defined as
the standard deviation of estimates across participants divided
by the mean of the estimates – has been shown to be a useful mea-
sure of price estimation accuracy (Dehaene & Marques, 2002).
Across all automobile estimates in this study, the Weber fraction
is 0.49. This is higher than the 0.34 value reported by Dehaene
and Marques (2002) across a broader range of products, which is
consistent with the above analysis suggesting that automobile
price estimates are less accurate than for other types of products.2

Although price recall is less accurate and the magnitude of the
error is larger for automobiles than has been reported for other
product categories, this finding is consistent with the broader liter-
ature on numerical estimation that reports hit rates (estimates that
are ±5% of the actual value) that range from 0% to 23% and absolute
normalized estimation errors (ANEs) that range from extremely
accurate (<0.01) to estimates that are incorrect by orders of magni-
tude (Brown, 2002). In addition, because the prices of commonly
purchased products are generally more accurately recalled than
the prices of infrequently purchased goods and recreational prod-
ucts (Estelami, 1998), it is reasonable that estimation errors for
automobile prices are higher than for other products from more
commonly purchased categories, such as groceries. Our SNE
calculations (Table 1) indicate that while there is a tendency to
2 Other important findings from this line of research are not directly applicable
here. For example, we do not find that the Weber fraction increases as price increases,
which likely reflects the fact that all of our stimuli are automobiles with prices that
are all much higher than other types of consumer products. Similarly, we do not find
any correlation between the Weber fraction for estimates of specific automobiles and
familiarity ratings for those same vehicles (r = 0.023).
over-estimate the price of the Passenger Cars, there is no general
tendency towards over- or under-estimation in the Sports Car or
SUV categories. Based on a random effects GLS regression model,
there is a significant difference in the mean SNEs between the prod-
uct categories (z = 4.310; p < 0.001), which confirms the apparent
bias towards over-estimation in the passenger car category.

In brief, participants were rarely accurate in terms of the per-
centage of correct estimates, and in absolute terms they misesti-
mated the price of the automobiles by a substantial margin.
However, as predicted, they were relatively accurate in terms of
their rank ordering of the automobiles by price (Table 1 reports
the mean individual-level average rank-order correlations by prod-
uct class). For all vehicles the rank order correlation coefficient is
0.641, which is consistent with the range for other product catego-
ries reported by Conover (1986) of 0.429–0.773. The three price
profiles (i.e., mean estimates by product class) are presented in
Fig. 1. Across all three of the profiles it is evident that the products
are stratified into two levels of brand status – a basic tier and a lux-
ury tier. The basic tier contains Fords, Chevrolets, Toyotas and Hon-
das, while the luxury tier is composed of the BMWs and the
Mercedes.

To more formally examine the grouping of the price estimates, a
series of hierarchical cluster analyses using Ward’s method and the
squared Euclidean distance measure was performed on the indi-
vidual-level price estimates within each product class. Table 2
illustrates the optimal cluster analysis solutions for each of the cat-
egories, and provides additional evidence that the estimates are
grouped into two levels of brand status (rather than three or more)
within each product class. There is one obvious exception to the
normal brand status grouping: the Chevrolet Corvette (see Table
2), which is an outlier with regard to the basic price tier (see
Fig. 1, Sports Cars). However, when participants are divided into
two groups based on a median split of the Corvette familiarity rat-
ings the mean Corvette price estimates for the two groups differ
(one-tailed t-test: t(21) = �1.6212, p = 0.07). Participants in the high
familiarity group estimate the Corvette to be $45,625
(SD = $23,463), while participants in the low familiarity group esti-
mate the Corvette to be $29,500 (SD = $11,362). Interestingly,
while the mean for the familiar group is closer to the true price
for the Corvette ($56,585), the mean for the unfamiliar group is
very consistent with the average price estimate for the basic sports
car tier (M = $30,833, SD = $12,937). A median split of the price
estimates based on the familiarity ratings does not result in any
significant differences between the two groups for any of the other
17 vehicles (all p > 0.10).

Based on the cluster analysis and the pattern of mean price esti-
mates evident in Fig. 1, it appears that product class (SUV, Sports
Car, Passenger Car) and brand status (luxury versus non-luxury)
are the features that the price estimates are based on. We tested
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this possibility by comparing the ability of these two features to
predict participant’s price estimates with an alternative model that
includes other potentially important predictors: perceived quality,
familiarity with the vehicle, brand name, country of origin, gender,
whether or not the participant owns a vehicle, whether or not the
participant plans to buy a vehicle in the next 12 months, whether
or not the participant bought a vehicle in the previous 12 months,
and the number of times participants had thought about automo-
biles in the past month. One advantage of the FBI model that we
are proposing is that it lends itself directly to regression analysis,
which has been well established as an appropriate method for test-
ing feature-based judgment theories similar to the one that we are
advocating here (Doherty & Brehmer, 1997; Hammond, 1986). In
this case, the potentially important features of the environment
serve as independent variables, while the numerical estimates
themselves are the dependent variables. Specifically, we use a ran-
dom effects GLS regression model, consistent with other linear
compensatory models of judgment (e.g., Hammond et al., 1975;
Payne, Bettman, & Johnson, 1992, 1993), with the following general
form:

Ye ¼ b0 þ bixi þ mi þ eij

where Ye is the participants’ price estimates, b0 is the intercept, bi is
the weight given to the critical feature i (either CLASS or STATUS).
We dummy coded CLASS as 1 (premium category: SUVs and Sports
Cars) or 0 (non-premium category: Passenger Cars), and STATUS
was dummy coded as 1 (luxury tier) or 0 (non-luxury tier). Log price
estimates are used rather than absolute price estimates, because the
distribution of estimates for this data set is truncated (with a min-
imum estimate of $10,000 and a maximum estimate of $100,000).
To account for the fact that each participant makes 18 price esti-
mates, two error terms are included in the model. The subject-spe-
cific residual (mi) differs between subjects, but its value is constant
for any particular subject. The general error term is represented
by eij.

As expected the two-feature (product class and brand status)
model of participants’ price estimates explains the majority of
the variance in the data (R2 = 0.582). Adding in all the remaining
predictors has only a small effect on overall fit of the model (full
model R2 = 0.599). The intercept (z = 185.84, p < 0.001, SE = 0.053)
is significant, as are the coefficients for product class (z = 15.02,
p < 0.001, SE = 0.029) and brand status (z = 17.10, p < 0.001,
SE = 0.029). Therefore, the two-feature additive inference model
of participants’ price estimates (with the intercept and the coeffi-
cients expressed in dollars) is

Ye ¼ $18;868þ $10;400 ðCLASSÞ þ $12;228 ðSTATUSÞ:
4.3. Discussion

A starting point for this experiment was to determine how
accurate people are when they estimate automobile prices. On
average, participants in Experiment 1 were relatively inaccurate
as compared to those of earlier studies of consumer price knowl-
edge (Monroe & Lee, 1999). This low hit rate is consistent with
Table 2
Experiment 1: optimal cluster analysis solutions.

Cluster number

Sports cars Sport utility vehicles Passenger cars

Ford 1 1 1
Chevrolet 3 1 1
Honda 1 1 1
Toyota 1 1 1
BMW 2 2 2
Mercedes 2 2 2
the assumption that people do not directly recall specific product
prices. It might also reflect two important facts about automobiles:
(1) market prices tend to fluctuate on a regular basis (between re-
gions and between dealerships within a region); and (2) consumers
tend to buy a new vehicle relatively infrequently (and so update
their knowledge structures less frequently than they might for
other products). Nevertheless, although we observe price knowl-
edge that is much less accurate than would be predicted by norma-
tive economic models, our participants exhibit levels of recall
accuracy that are high relative to other domains of quantitative
estimation (Brown, 2002). This may reflect the more frequent
exposure people have on prices as compared to other quantitative
facts such as national populations or the nutritional value of fast
foods.

One reason we chose automobiles as our stimuli was that infor-
mation about vehicle prices, especially for the familiar brands that
we have chosen, is relatively common. Therefore, it is not surpris-
ing that the vehicles that were most poorly estimated (e.g., Honda
S2000 and BMW X5) are more niche products with relatively small
market shares and prices that are atypical within their product
class. The true prices for these vehicles deviate dramatically from
the other brands with which they are normally grouped. Neverthe-
less, the absolute magnitude of the observed estimation errors is
large enough to deserve attention, as previous research has dem-
onstrated that such errors can have a substantial impact on prod-
uct demand and consumers’ perceptions of transaction value
(Putler, 1992; Thaler, 1985).

It should be noted that we are not suggesting that consumers
are never able to recall specific prices. Clearly, there are some
familiar products for which consumers are able to recall an accu-
rate price (Estelami, 1998). However, we argue that as in other do-
mains of numerical estimation, direct recall is the exception rather
than the rule (Brown, 2002). In most cases, consumers are forced to
rely on more general knowledge to construct price estimates. The
consistent stratification of price estimates into two distinct price
tiers is evidence of an estimation strategy based on a general level
of price knowledge – i.e., a product class and brand status inference
process.
5. Experiment 2

Experiments 2 and 3 compare our feature-based inference mod-
el with other potentially relevant theories by examining the pre-
dictions they make about how estimates will be updated when
respondents are presented with relevant new information.

5.1. The split-seed hypothesis for automobile price estimates

We predicted that when people are presented with a seed price
that is incongruent with their first set of estimates, they will up-
date their second set of estimates by adjusting the weight that is
given to the critical features of brand status and product class.
For example, when we presented respondents with the true price
of the BMW X5, which is much more expensive than other SUVs,
we expected that would have a stronger effect on other luxury
SUVs than it would have on SUVs in general, other luxury vehicles,
or other non-luxury non-SUV automobiles. That is, the effect of the
seed will be split depending on the relevance of the change in the
weight given to the critical features with respect to the automo-
biles for which an estimate is being made.

5.2. Alternative predictions

However, it is not necessarily the case that people will react this
way to a seed price. In fact, other well-known theoretical frame-
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works predict very different effects. To begin our examination of
these alternative predictions, we look at the neo-classical theory
of economics (Marshall, 1890; Monroe & Lee, 1999), which predicts
that prices are known for all goods and that knowledge of one
product’s price is independent of other prices for related products.
In this case, when asked to estimate automobile prices, people
would employ a numerical-retrieval strategy and simply recall
the prices of each vehicle from memory. As a result, the only esti-
mate that would be revised in the second set would be the price of
the seed vehicle. Although this may seem to be a relatively weak
alternative given the results that we have discussed from prior
studies of estimation, the neo-classical theory continues to be an
important foundation in many current studies of economic behav-
ior (e.g., Becker, 1993; Lucas, 1987; McFadden, 1999), including
studies of price knowledge (e.g., Briesch, Krishnamuthi, Mazumdar,
& Raj, 1997; Kalyanaram & Little, 1994; Putler, 1992).

Another possibility is that all the automobiles will shift by a
constant amount as the overall metric is reset, while the distance
between the ordered entities is kept constant. This type of shift
is consistent with revising the metric (i.e., the range of values)
within the ordinal conversion process. For example, in studies of
subjective geography, it has been found that information that
changes a participant’s estimate of one city’s latitude can affect
all other cities by a constant amount (Friedman & Brown, 2000a,
2000b) – e.g., when a participant realizes that s/he was 10� too
low in his or her estimate of the location of New York, the entire
distribution is uniformly revised upwards by 10�. An automobile
seed fact could have the same effect. After learning that his or
her estimate for the BMW X5 was $20,000 too low, the respondent
could increase all estimates in the second set by $20,000. The met-
ric is revised, but the ordering of and distance between entities
within the distribution remains constant.

Finally, it may be that, consistent with the ordinal-conversion
process, people respond to a seed price by repartitioning the
range. One way to repartition the range is to move sub-categories
within the range, independent of one another. For example, in
studies of subjective geography, people group city latitudes in
some regions together and when a seed fact is presented it affects
the category it is from, while cities in other categories are not af-
fected (e.g., Friedman & Brown, 2000a, 2000b). This type of cate-
gorical knowledge structure implies that, for example, after
exposure to the BMW X5’s true price, participants’ would revise
all estimates for other luxury vehicles and SUVs (the sub-catego-
ries that the BMW appears to belong to based on the results of
Experiment 1) to keep prices within the categories consistent.
However, there would be no reason to revise price estimates that
were not part of the SUV or luxury categories. More importantly,
all the categories that are affected would move by a constant
amount. Therefore, continuing with the BMW X5 example, the
adjustment in the SUV category would be the same as the adjust-
ment in the luxury vehicle category and it would also be the
same for vehicles that were in both the luxury and SUV categories
– i.e., there would be no additive effect for vehicles that are mem-
bers of both categories.

5.3. Method

5.3.1. Participants
Data were collected from 53 undergraduate students (17 male

and 36 female) in psychology and business at a large Canadian uni-
versity. The mean age was 19.9 years and ranged from 17 to 38. Of
these participants 42% currently owned a vehicle, 21% were
planning to buy a vehicle in the next 12 months, and 17% had pur-
chased a vehicle in the past 12 months. These participants reported
that they have thought about vehicles an average of 14.4 times
over the past month, with a range of 0–100 times.
5.3.2. Design
All participants were randomly assigned to one of three seed

conditions. Twenty participants in Condition 1 were presented
with the price for the Honda S2000 sports car ($48,000). Seventeen
participants in Condition 2 were presented with the seed price for
the BMW X5 sport utility vehicle ($68,700). Sixteen participants in
Condition 3 were presented with the seed price for the Lexus
GS400 sports car ($67,960). Participants were asked to provide
price estimates for 21 automobiles. The dependent variable was
the price estimate for each of the 21 automobiles.

5.3.3. Materials
The 21 automobiles for which participants estimated base

prices in this experiment included the same 18 vehicles from
Experiment 1 plus an additional three vehicles from the Lexus
brand (Lexus ES300 passenger car, Lexus GS400 sports car, and
the Lexus RX300 SUV).

5.3.4. Procedure
The first part of this experiment was a replication of Experiment

1, with the same three tasks and with the order of stimuli pre-
sented on the computer screen one at a time and in random order
(as in Experiment 1). However, as discussed above, a new brand
(Lexus) was added to the stimuli, thereby bringing the total num-
ber of vehicles to 21. The Honda S2000 and BMW X5 seeds were
chosen because participants were very inaccurate in their price
estimates for these cars in Experiments 1. The Lexus GS400 seed
fact was chosen because its true price is atypical, which we have
argued reduces accuracy in price estimates. Including this vehicle
in the set allowed us to test the prediction that its price would
be substantially under-estimated. After the seed fact was pre-
sented, participants were asked to again estimate the price of the
21 automobiles. This time, the seed fact (the model name and
the model price for one of the Honda, Lexus or BMW) was present
in the right hand corner of the screen for participants to see as they
made their estimates. At the end of the experiment all participants
were asked to complete the same survey as in Experiment 1.

5.4. Results

The initial price estimates from Experiment 2 are plotted in Fig. 2.
This figure illustrates that the results of Experiment 2 replicate the
results of Experiment 1, with respect to the pattern and grouping
of initial price estimates. Price recall accuracy, the magnitude of
the estimation error and the accuracy of participants’ rank order cor-
relations are reported in Table 1. The general patterns of price esti-
mation found in Experiment 1 are replicated in Experiment 2. In
addition, as predicted, the price of the Lexus GS400 was substan-
tially underestimated (one sample t-test: t(52) = �11.483,
p < 0.001). The true price of the Lexus is $67,960; therefore, the mean
pre-seed estimate was incorrect by $22,526 or 33%.

We find that, on average, the second set of price estimates was
revised in all three conditions, as participants reconcile their initial
underestimate for the seeded vehicle with the seed price they are
given (see Fig. 3). To test the statistical significance of the revisions
between the first and the second set of price estimates we use a
random effects GLS regression model with the log of the individ-
ual-level price estimates as the dependent variable and an inde-
pendent variable dummy coded as 0 = first estimate and
1 = second estimate. We find that the difference between the first
and second estimates is significant (b = 0.223, z = 11.95,
p < 0.001). Converting the b coefficient into dollars indicates that
the second set of estimates increased by an average of $8224.
The first and second price estimate means, as well as the standard
deviations, are reported in Table 3 by experimental condition and
product class.



Fig. 3. Experiment 2 – mean first and second price estimates, and true prices, across the three product categories and the three seed conditions (the seed price is indicated by a
circled data point).
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Fig. 2. Experiment 2 – mean initial (pre-seed) price estimates and true prices across the three product categories.
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Next, we look at the ability of the GLS regression model used in
Experiment 1 to predict price estimates on the basis of two-key
features: product class and brand status. We apply the same model
to the data in each of the seed conditions, as well as to the full set
of data collapsed across seed conditions. The results (reported in
Table 4) indicate that the two-feature model explains much of
the variance in both sets of price estimates, in each condition
and collapsed across conditions, in the second experiment. As in
the first experiment, adding in the other potentially important pre-
dictors does not have a substantial impact on the fit of the model.



Table 4
Experiment 2: the two-key features model applied to each condition and collapsed across conditions.*

Estimate set Constant Class Status R2 (two-key features) R2 full (all 11 predictors)

Full model (collapsed across conditions) First $21,164 $8580 $14,363 0.484 0.527
Second $26,388 $11,973 $15,087 0.511 0.547

Condition 1 (Honda S2000 – $48,000) First $21,789 $7944 $13,619 0.487 0.554
Second $27,203 $10,398 $12,175 0.428 0.488

Condition 2 (BMW X5 – $68,700) First $21,571 $7690 $13,513 0.400 0.443
Second $27,198 $12,260 $14,794 0.512 0.545

Condition 3 (Lexus GS400 – $67,960) First $19,964 $10,363 $16,278 0.580 0.608
Second $24,500 $13,836 $19,412 0.628 0.632

*All the intercepts, as well as all the coefficients for product class and brand status, reported in the table are significant for both the first and the second set of estimates (all
p < 0.001).

Table 3
Experiment 2: mean estimates and standard deviations by condition and vehicle type, first and second estimates (the first and second estimates for the seed vehicle have been
removed from the data in each condition).

First set of estimates Second set of estimates

Basic Luxury Basic Luxury

Mean Standard
deviation

Mean Standard deviation Mean Standard deviation Mean Standard deviation

Condition 1
(Honda S2000 $48,000)

Passenger cars $21,363 $7858 $41,800 $15,445 $27,313 $9417 $44,433 $13,062

Sports cars $33,517 $15,437 $50,400 $18,068 $41,767 $13,634 $55,100 $11,040
SUVs $33,438 $12,929 $48,467 $17,929 $39,700 $10,180 $54,133 $15,488

Condition 2
(BMW X5 $68,700)

Passenger cars $21,309 $6701 $41,765 $17,865 $26,574 $10,401 $49,843 $16,435

Sports cars $35,985 $15,355 $49,118 $17,219 $45,647 $16,778 $58,373 $16,404
SUVs $29,294 $7521 $48,412 $17,978 $41,544 $12,049 $59,118 $12,426

Condition 3
(Lexus GS400 $67,960)

Passenger cars $19,906 $9004 $43,563 $14,233 $23,641 $11,367 $53,583 $10,518

Sports cars $35,453 $14,622 $54,219 $13,090 $44,797 $14,344 $64,594 $12,000
SUVs $32,469 $10,753 $53,250 $14,246 $40,484 $11,317 $62,500 $10,518
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Follow-up tests provide additional evidence that the seed price
has an effect that differs across vehicles in a manner that is consis-
tent with the split-seed hypothesis, but inconsistent with the alter-
native explanations. For example, in Condition 1 (the Honda S2000
sports car seed price), luxury passenger car price estimates are re-
vised by an average of $2633, which is significantly less than the
average revision to basic passenger cars (M = $5950;
F(1,138) = 4.243, p = 0.041). In Condition 2 (the BMW X5 SUV seed
price), luxury sports cars are revised by an average of $9662, which
is significantly more than the average revision to basic passenger
cars (M = $5265; F(1,134) = 3.912, p = 0.037). The results in Condition
3 are similar, as luxury SUVs (M = $9250) are revised by an amount
equivalent to luxury sports cars (M = $10,375; F(1,78) = 0.130,
p = 0.720), but significantly greater than basic passenger cars
(M = $3735; F(1,110) = 3.927, p = 0.005).

Consistent with the results of other studies on the effect of seed
information on second estimates, the seed prices do not act as tra-
ditional anchors (Brown & Siegler, 2001). That is, in addition to sec-
ond price estimates assimilating towards the seed value (e.g., lower
estimates increasing towards seed), some price estimates are mov-
ing away from (contrasting with) the seed price. Fig. 3 illustrates
that when the price of the Honda S2000 is the seed fact the second
set of price estimates contrast (i.e., estimates increase away from
the seed) for luxury sports cars (first estimate mean = $50,400; sec-
ond luxury tier estimate mean = $55,100; t = �2.955, p = 0.002) and
for luxury SUVs (first estimate mean = $48,466; second estimate
mean = $54,133; t = �4.357, p < 0.001).

5.5. Discussion

Overall, the results from Experiment 2 provide additional evi-
dence in favor of a general knowledge structure for automobile
prices, organized by brand status and product class. When pre-
sented with an external reference price, that is inconsistent with
their initial price estimates, participants revise the range and the
mean of their estimates; yet the general ordinal structure is main-
tained. While Experiment 1 indicated that product class and brand
status are critical features for generating price estimates, the two-
feature inference model could only be fit ex-post. Experiment 2
replicates the results of Experiment 1, and finds that the proposed
FBI model fits the data well for both the pre- and post-seed price
estimates.

In addition, Experiment 2 tested the split-seed prediction of the
FBI model against a set of alternative theories. The results clearly
indicate that a seed fact specific to one automobile affects price
estimates for other automobiles. This finding is inconsistent with
the neo-classical theory, which contends that price knowledge is
product-specific and that revising price knowledge for one product
should not affect other products. The results of the second experi-
ment also indicate that presenting participants with a seed price
does not affect all other price estimates equally, which rules out
the possibility that price knowledge is revised by a constant
amount.

Although the revised estimates clearly result in a change to the
range and mean of the price estimates, this change is not consis-
tent with a simple repartitioning of the range based on category
assignment because all vehicles within a particular category (e.g.,
luxury or SUV) are not affected by the same amount. Instead, auto-
mobiles that share both features with the seed vehicle are affected
more than those that share only a single feature or no features.
That is, brand status and product class have significant indepen-
dent effects on price estimates.

The seed price also has an effect on the lower bound of the
range (Table 4). This suggests that the seed caused people to revise
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their metric knowledge of a, in addition to revising the weights as-
signed to each critical feature. This finding is consistent with pre-
vious work on numeric estimation, which has found that a
revision of global metric knowledge is a common effect of seeding
the knowledge base (Brown, 2002; Brown & Siegler, 1993). As in
ordinal conversion, which begins with a setting of the metric fol-
lowed by a mapping of values into that revised range, feature-
based integration also involves a general resetting of the metric.
However, the FBI model is distinct from ordinal conversion in the
process by which individual entities are assigned values. While
FBI predicts and explains the split-seed effect – that automobiles
that share both features with the seed vehicle are affected more
than those that share only a single feature or no features – ordinal
conversion cannot account for these results.
6. Experiment 3

In this third experiment we elicit estimates in different con-
texts, that do not include all product classes and levels of brand
status, which allows us to address the possibility that the estimates
we have seen so far are being driven by the context that we have
given to participants. In other words, it is possible that the stratifi-
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Fig. 4. Experiment 3 – mean first and second price estimates, and true prices, across the
cation we have seen and the means for the different clusters of
estimates may be the result of the specific estimation context
rather than the participants’ true knowledge structure for automo-
bile prices. For example, passenger cars are seen as the least expen-
sive vehicles and so are priced at the lower bound of the range
(approximately $18,000). It is conceivable that if we asked only
about luxury and basic SUVs, participants would produce basic
SUV estimates at the lower bound of the range (approximately
$18,000) because they are the least expensive vehicles in the given
context. This possibility is examined in Experiment 3.

6.1. Method

6.1.1. Participants
Data were collected from a total of 63 undergraduate students

(29 male and 34 female) majoring in business at a large Canadian
university, who were participating to earn course credit. The mean
age was 21.7 years and ranged from 19 to 32. Of these participants
56% currently owned a vehicle, 27% were planning to buy a vehicle
in the next 12 months, and 6% had purchased a vehicle in the past
12 months. These participants reported that they have thought
about vehicles an average of 5.2 times over the past month, with
a range of 0–50 times.
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6.1.2. Design
All participants were randomly assigned to one of three exper-

imental conditions. Each condition varied the make-up of the set
vehicles to be estimated (see Appendix A). In Condition 1, partici-
pants were asked to estimate the base price for 21 vehicles from
the luxury SUV, luxury sports sedan and luxury passenger car cat-
egories. In Condition 2, participants were asked to estimate the
base price of 14 automobiles selected from the luxury SUV and ba-
sic passenger car categories. In Condition 3, participants were
asked to estimate the base price of 14 automobiles from the luxury
and basic SUV categories.

6.1.3. Materials
The automobiles for which participants estimated prices in this

experiment are listed by experimental condition in Appendix A.

6.1.4. Procedure
Following the procedure in Experiment 2, each participant was

asked to estimate the base price for a series of automobiles twice.
Vehicles were presented using the same randomization procedure
employed in Experiments 1 and 2. The second time participants
generate price estimates they do so after having been told the price
for the Lexus LX470 ($99,950.00). At the end of the experiment all
participants were asked to complete the same survey as in Exper-
iments 1 and 2.
6.2. Results

As in Experiment 2, the first and second price estimates for
the seed vehicle were removed (because the second estimates
for the seed vehicle are simply copied from the value displayed
on the screen) from the following analyses. As expected, price re-
call accuracy, the magnitude of the estimation error and the accu-
racy of participants’ rank order correlations for the first set of
estimates are very comparable with the results of Experiments 1
and 2 (see Table 1). Fig. 4 illustrates the impact that the Lexus
LX470 seed price had on the second set of estimates across the
three experimental conditions (the means and standard deviations
are reported in Table 5). It is apparent from these results that the
estimates observed in Experiments 1 and 2 are not simply the re-
sult of the stimulus context, as the automobiles’ valuations are
very comparable across all three experiments. As in Experiments
1 and 2, and using the same random effects GLS regression (with
the log of the price estimates as the dependent variable), the
two-feature (brand status and product class) model fits the data
well for both sets of price estimates in the third experiment
(two-feature model first set of estimates R2 = 0.394; full model first
set of estimates R2 = 0.438; two-feature model second set of esti-
mates R2 = 0.533; full model second set of estimates R2 = 0.575).
We apply the model to only the full set of data here as the seed
is the same in each experimental condition and our predictors
(class and brand status) are not both present in Conditions 1 and
Table 5
Experiment 3: mean estimates and standard deviations by condition for the first and second
base price $99,950), have been removed from the data).

First set of estimates

Mean

Condition 1 Luxury sedans $41,762
Luxury sports cars $43,986
Luxury SUVs $50,048

Condition 2 Basic passenger cars $21,551
Luxury SUVs $55,500

Condition 3 Basic SUVs $36,952
Luxury SUVs $53,714
3. The intercept and the coefficients are significant for both the first
and the second set of estimates, p < 0.001. The fitted models, with
coefficients expressed in dollars, are

First set of estimates: Ye = $22,240 + $7272 (CLASS) + $14,819
(STATUS).
Second set of estimates: Ye = $25,917 + $10,880 (CLASS) +
$23,831 (STATUS).

As expected, the intercept and the coefficients for the second set
of estimates all increase in response to the seed price. The split-
seed effect is again evident in the post-seed price profiles (Fig. 4)
and verified by the regression models. The seed fact affects vehicles
that share both critical features with the seed vehicle more than it
affects vehicles that share a single feature or vehicles that do not
share either critical feature. For example, consider the distinct dif-
ferences in the magnitude of the revisions made to price estimates
between basic passenger cars ($4122), basic SUVs ($14,524), lux-
ury sedans ($10,769), and luxury SUVs ($25,887 averaged over all
three conditions) (see Table 5 and Fig. 4). As predicted by the FBI
model, the Lexus (luxury) SUV seed price has a small effect on basic
passenger cars (that share none of the critical features with the
seed vehicle); a moderate effect on basic SUVs (which share one
of the critical features: product class); a moderate effect on luxury
sedans (which share one of the critical features: luxury brand sta-
tus); and, an additive effect on luxury SUVs (which share both crit-
ical features with the seed vehicle). Moreover, the effect of the seed
price on estimate revisions for other luxury SUVs is very closely
approximated by the effect on basic SUVs plus the effect on luxury
sedans. This pattern of results cannot be accounted for by any of
the previously identified modes of numerical estimation.

Finally, these results are also consistent with Experiment 2 in
that we see a general resetting of the metric acting in concert with
the FBI process (see Table 5 and Fig. 4). This effect is captured in the
intercept of our model (i.e., a). Here, even though the increase in
the mean price of basic passenger cars is small compared with
the increase in luxury SUV prices (see Table 5 and Fig. 4), the dif-
ference is significant (M = $4122; t(1,146) = �3.534, p < 0.001) and
consistent with a general resetting of the overall metric.
7. Discussion

We have argued that estimates of automobile prices are being
inferred from knowledge of two critical features, which implies
that the general pattern of price estimates we have seen in the first
two experiments should not be context-specific. The results of
Experiment 3 provide strong support for this prediction. Interest-
ingly, in this experiment, we see a substantial upwards revision
of the coefficient for brand status in the second set of estimates.
Clearly, the precise weight of the coefficients will depend on the
difference between the seed price and the previous estimates;
therefore, the FBI model does not predict the exact amount of
estimates (the first and second estimates for the seed vehicle, the Lexus LX470 (actual

Second set of estimates

Standard deviation Mean Standard deviation

$13,666 $52,531 $20,836
$15,209 $55,571 $22,957
$15,015 $74,452 $24,186
$12,060 $25,673 $17,474
$24,698 $79,310 $39,721
$15,442 $51,476 $22,876
$22,750 $83,159 $25,378
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the change in the price estimates as a result of a seed price. How-
ever, it does predict the direction of the shift (i.e., the second esti-
mates shift up towards the seed price), and the general magnitude
of the shift (i.e., the total amount of the shift is less than the differ-
ence between the seed price and the first price estimate).
8. General discussion

Overall, the evidence presented in this paper provides strong
support for the FBI model of numerical estimation, which is able
to both predict and explain the split-seed effect – a significant con-
tribution to the extant literature as no previous theory of numer-
ical estimation is able to account for this effect. The theory and
results reported in this paper also point to some potentially fruit-
ful areas for future research. For example, the present work fo-
cuses on one domain (i.e., automobile prices). Although
automobiles are an important domain of real-world knowledge
that, given the economic importance of the industry is interesting
in its own right, we believe that this model should be applicable
to other domains as well. Specifically, we expect that an FBI pro-
cess will be adopted in domains that are structured by a small
number of critical features. In such cases, knowledge of the do-
main is also likely to be feature based and estimates should re-
flect this structure.

As previously discussed consumer products are one domain
that is explicitly, and intentionally, organized by features. Our re-
sults indicate that for automobiles two of these features are highly
diagnostic price cues. In other domains, a different number of fea-
tures may be more appropriate and in some cases these features
may be best described by more than two levels (i.e., they may
not be binary). We suspect that price knowledge is also feature
based in many other product categories. Beyond price knowledge,
features may also play an important role in the estimation process
in a variety of other domains such as ambient temperature (e.g.,
latitude and season), household income (e.g., neighborhood and
occupation), age of a tree (e.g., height and width), and so on.

However, consistent with prior research on numerical estima-
tion (Brown, 2002; Brown & Siegler, 1993; Friedman & Brown,
2000a, 2000b) we also expect there will be important domain-spe-
cific differences in the selection of key features and the reliance on
knowledge of the relevant range. Although we find that two fea-
Appendix A

Experiment 3 – Automobiles to be estimated by condition

Condition Brand Category

1 Infiniti Luxury SUV
1 Acura Luxury SUV
1 Lexus Luxury SUV
1 Cadillac Luxury SUV
1 Mercedes Luxury SUV
1 BMW Luxury SUV
1 Lincoln Luxury SUV
1 Infiniti Sp sedan
1 Acura Sp sedan
1 Lexus Sp sedan
1 Cadillac Sp sedan
1 Mercedes Sp sedan
1 BMW Sp sedan
1 Lincoln Sp sedan
1 Infiniti Luxury sedan
tures are used to generate automobile price estimates, it may be
that in many domains one feature is sufficient. In the study of sub-
jective geography (Friedman & Brown, 2000a, 2000b; Friedman &
Montello, 2006), for example, being able to place a city into a regio-
nal category may be all that is required to estimate latitude. Simi-
larly, Gigerenzer, Hoffrage, and Kleinbölting (1991) have argued
that judgments of city populations can be made on the basis of a
single cue. On the other hand, there may be domains in which it
is common to use multiple features (e.g., event dating) or in which
different people use a different number of features (e.g., novices
versus experts). It would also be interesting to further examine
the impact that a seed fact has general metric knowledge when
an FBI process is being used to generate estimates. In any case,
extending the current model to other domains is likely to be prac-
tically and theoretically informative.

From an applied perspective, the FBI model suggests that
when consumers update their knowledge of the price of a par-
ticular product that revision will have implications for other
products’ prices to the extent that the revision affects the
weights given to the critical features within that domain. This
may explain why luxury companies like Mercedes have diffi-
culty selling lower priced automobiles (Heinrich, 2003). People
looking for a less expensive car are likely to estimate that a
Mercedes is outside of their price range and, therefore, not in-
clude it in their consideration set. In addition, our results are
consistent with the idea that short-term price promotions can
affect a brand’s image and consumers’ price expectations over
the long run (Greenleaf, 1995). For example, consistently putt-
ing a product on sale at a lower price tier may eventually con-
vince consumers that it is a lower status product. As a result,
they will be less willing to pay as much for it as they would
for a higher status product.
Acknowledgements

The authors gratefully acknowledge the support provided by
the Social Sciences and Humanities Research Council of Canada
to the first author, as well as an NSERC operating grant awarded
to the second author. The authors wish to thank Adam Finn, Rich-
ard Johnson, Kersi Antia, Dave Jobson and Gerald Häubl for their
valuable comments.
Model True base price

QX45 $48,800.00
MDX $50,300.00
LX470 $99,950.00
Excalade $76,530.00
M-Class $51,100.00
X5 $58,400.00
Navigator $72,125.00
I35 $41,200.00
TL $40,800.00
IS300 $37,775.00
Seville $63,400.00
SL Class $127,500.00
M3 $73,850.00
LS $43,750.00
M45 $62,000.00



Appendix A (continued)

Condition Brand Category Model True base price

1 Acura Luxury sedan RL $55,800.00
1 Lexus Luxury sedan GS $61,700.00
1 Cadillac Luxury sedan Deville $55,685.00
1 Mercedes Luxury sedan E-Class $71,350.00
1 BMW Luxury sedan 5 Series $66,400.00
1 Lincoln Luxury sedan TownCar $57,345.00
2 Infiniti Luxury SUV QX45 $48,800.00
2 Acura Luxury SUV MDX $50,300.00
2 Lexus Luxury SUV LX470 $99,950.00
2 Cadillac Luxury SUV Excalade $76,530.00
2 Mercedes Luxury SUV M-Class $51,100.00
2 BMW Luxury SUV X5 $58,400.00
2 Lincoln Luxury SUV Navigator $72,125.00
2 Nissan Passenger car Sentra $15,598.00
2 Honda Passenger car Civic $16,100.00
2 Toyota Passenger car Echo $12,995.00
2 Pontiac Passenger car Sunfire $15,995.00
2 Dodge Passenger car SX 2.0 $15,195.00
2 Ford Passenger car Focus $16,475.00
2 Hyundai Passenger car Accent $12,895.00
3 Infiniti Luxury SUV QX45 $48,800.00
3 Acura Luxury SUV MDX $50,300.00
3 Lexus Luxury SUV LX470 $99,950.00
3 Cadillac Luxury SUV Excalade $76,530.00
3 Mercedes Luxury SUV M-Class $51,100.00
3 BMW Luxury SUV X5 $58,400.00
3 Lincoln Luxury SUV Navigator $72,125.00
3 Nissan Basic SUV Murano $37,770.00
3 Honda Basic SUV Pilot $41,000.00
3 Toyota Basic SUV 4Runner $39,220.00
3 Pontiac Basic SUV Aztec $27,970.00
3 Dodge Basic SUV Durango $41,975.00
3 Ford Basic SUV Explorer $38,600.00
3 Hyundai Basic SUV Santa Fe $22,595.00
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